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1      EXECUTIVE SUMMARY 

Introduction 

Rapid advances in DNA sequencing and other technologies are ushering in an era of personal 

genomics. Soon it will be possible for every individual to have access to the complete DNA 

sequence of his or her genome for a modest cost. This development, coupled with the improving 

ability to predict how genetic variation affects susceptibility to disease, response to medical 

treatment, and other important phenotypes, will have a transformative effect on health care. This 

will be far reaching in civilian medical practice, and it could be used in the assessment of 

personnel at all stages of their military service. 

The U.S. military is a major consumer of medical services and has special medical needs 

compared to the general population. As the revolution in personal genomics proceeds, the 

military stands to benefit by implementing genomic technologies that enhance medical status and 

improve treatment outcomes. Furthermore, both offensive and defensive military operations may 

be impacted by the applications of personal genomics technologies through enhancement of the 

health, readiness, and performance of military personnel. It may be beneficial to know the 

genetic identities of an adversary and. conversely, to prevent an adversary from accessing the 

genetic identities of U.S. military personnel. 

Study Charge 

JASON was asked to consider the impact of anticipated advances in genome sequencing 

technology over the next decade, and to assess the relevant operational opportunities and 

challenges that will be presented by these technologies. The specific questions we sought to 

address in the study were: 

1. What types of genetic information are likely to be most informative in personalized medicine 

relevant to military personnel? 

2. What types of genetic information are likely to have tactical benefit in either offensive or 

defensive military operations? 

3. What are the capabilities and costs of current technologies for assaying genetic variation, and 

are these capabilities sufficient to acquire the desired genetic information at reasonable cost? 



4. How do recent research findings on the relative importance of different types of variation in 

human disease (e.g. common variants vs. rare variants; single-nucleotide polymorphisms vs. 

copy-number changes) affect the assessment of desired information and the technology 

needed to acquire it? 

5. What new genomic technologies are emerging that are likely to benefit the military in the 

near term, and what is the likely roadmap for advances in genome sequencing technology 

over the next decade or so? 

6. What capabilities will be required to analyze large sets of genomic data and accompanying 

phenotype data to derive information regarding the genetic basis for phenotypes of unique 

concern for force protection? 

7. How should personal genomic information be handled to maintain the security of that 

information? 

Summary 

The first draft sequences of the human genome were published a decade ago at a cost of 

~$300M. Although these data provided an unprecedented view of the genetic blueprint of 

humans, the prohibitive cost of DNA sequencing made difficult the correlation of genetic 

variations with specific traits. Successive improvements in "second-generation" DNA 

sequencing platforms over the last five years reduced the cost of sequencing by approximately an 

order of magnitude each year. An entire human genome can now be sequenced in a matter of 

days for a retail cost of $20,000, and "third-generation" DNA sequencing systems soon to be 

released will drive costs of reagents to below $ 100, although machines, labor and data processing 

expenses will add to the cost of each genome. 

Given technological developments, we believe that DNA sequencing costs will no longer be 

a factor limiting personal human genomics technologies. Therefore DNA sequencing 

information is likely to be broadly applied to health assessment, therapeutic decisions, and 

predicting phenotypes of interest. Although current understanding of the linkages between the 

genotypes of individuals and their phenotypes is limited, researchers are pursuing the 

challenging topic of linking genetic variations to specific diseases or other traits and soon will 

have an enormous amount of DNA sequence data available to drive these linkage studies. 

Furthermore, individuals will have ready access to their own genome sequences at modest cost, 



and these data can be searched for genetic indicators of the propensity for disease traits, to the 

extent such linkages can be established. 

The DoD is well positioned to capitalize on personal genomics technologies and could 

choose to be full partners with industry and academic leaders in this field. The DoD has a large, 

well-defined population in generally good health, together with their medical health records, 

which could facilitate valuable longitudinal studies correlating genotype and phenotype. The 

existing military health care delivery system is in a position to be adapted to accommodate 

personalized genomics information. The DoD can leverage many of the advances within the 

civilian healthcare system, but there are also particular phenotypes that are of interest to the 

military that are unlikely to be high-priority goals for research and development in the civilian 

sector, and which therefore merit special DoD attention. 

Findings 

The technologies for DNA sequencing and personal genomics are advancing at a rapid pace. 

The cost of obtaining personal genomics data will continue to fall and this information will be 

used to make predictions regarding health and performance. Soon, researchers will have an 

enormous amount of data to use in the challenging effort to link genotypes with phenotypes of 

interest. Correlating genotypic markers with phenotypic traits will be challenging, particularly 

for traits controlled by multiple genes with low penetrance. and will require the development and 

application of powerful bioinformatics tools: this represents the subject of an ongoing research 

effort. Furthermore, there are genetic features beyond the genome sequence that stand to 

complicate efforts to link genotypes with phenotypes. and yet promise opportunities for 

understanding physiology and disease. Both epigenetics and the human microbiome, for 

example, are known to exert major effects on human phenotypes. 

The specific findings of the study are the following: 

1. The $100 genome is nearly upon us. and soon the cost of DNA sequencing will no longer be 

a limiting factor in genomic analysis. 

2. The era of personal genomics has already begun, but the practical application of genomic 

information has thus far been limited. 

3. Broader application of genetic information will require deeper knowledge of genotype- 

phenotype correlations, a subject of substantial, ongoing research. 
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4. Many phenotypes of relevance to the DoD are likely to have a strong genetic component, for 

which better understanding may lead to improved military capabilities. 

5. Certain phenotypes will also depend upon epigenomic and microbiomic contributions. 

However, human epigenomes and microbiomes are diverse and will change with time, and 

therefore complete datasets for these genetic signatures cannot be collected. 

6. The DoD already maintains a comprehensive medical database for its personnel that 

eventually will also include their complete genome sequences. 

7. The DoD will benefit by organizing personnel data into phenotypes of relevance to the 

military, then correlating those phenotypes with genetic information. 

Recommendations 

The DoD can benefit significantly by employing personal genomics technologies when 

evaluating the health and performance characteristics of their personnel. The DoD could take a 

leading role in the personal genomics era, and become full partners with industry and academia 

in creating useful information from genotype and phenotype data. Alternatively, the DoD could 

choose to play a more limited role in the research necessary to link genotypes with phenotypes, 

and pursue only those aspects that are of special interest to the military and that would otherwise 

not be pursued by the civilian sector. 

The DoD can harness the advances in personal genomics technology by taking the actions 

described below. 

Major Recommendation 

The DoD should establish policies that result in the collection of genotype and phenotype data, 

the application of bioinformatics tools to support the health and effectiveness of military 

personnel, and the resolution of ethical and social issues that arise from these activities. 

Specific Recommendations 

DoD Military Health System 

1. Establish procedures for the collection and archiving from all military personnel DNA 

samples that are compatible with subsequent genotype determination. 

2. Plan for the eventual collection of complete human genome sequence data from all military 

personnel. 



3. Arrange for the secure, long-term storage of DNA sequence data. 

4. Prepare for the collection of epigenome and microbiome data when appropriate. 

DoD Office of Health Affairs 

1. Determine which phenotypes are of greatest relevance to the DoD. 

2. Cooperate with health care professionals to collect and store these data. 

3. Use bioinformatics tools to correlate genetic information with phenotypes to discover 

linkages between the two datasets that will ultimately allow genotype information to be used 

productively. 

JASON was pleased to conduct this study, which allowed us to assess the impact that rapidly- 

improving DNA sequencing technologies will have on genomics and the implications of these 

advances for the DoD. DNA sequencing costs, which previously had been one of the limiting 

factors on the broad use of personal genomics, will soon become comparable to most routine 

medical testing. The changing economics will enable advances in correlating genotype and 

phenotype that stand to benefit the DoD. We also anticipate that the added layers of genomic 

complexity derived from epigenetics and human microbiomics will offer additional opportunities 

for improving the health and enhancing the performance of military personnel. 



2     INTRODUCTION 

In this report we summarize our considerations and findings of the 2010 JASON Summer 

Study entitled "The $100 Genome: Implications for the DOD". The study charge from DoD 

DDR&E was to address the following questions: 

1. What types of genetic information are likely to be most informative in personalized 

medicine relevant to military personnel? 

2. What types of genetic information are likely to have tactical benefit in either offensive or 

defensive military operations? 

3. What are the capabilities and costs of current technologies for assaying genetic variation, 

and are these capabilities sufficient to acquire the desired genetic information at 

reasonable cost? 

4. How do recent research findings on the relative importance of different types of variation 

in human disease (e.g. common variants vs. rare variants; single-nucleotide 

polymorphisms vs. copy-number changes) affect the assessment of desired information 

and the technology needed to acquire it? 

5. What new genomic technologies are emerging that are likely to benefit the military in the 

near term, and what is the likely roadmap for advances in genome sequencing technology 

over the next decade or so? 

6. What capabilities will be required to analyze large sets of genomic data and 

accompanying phenotype data to derive information regarding the genetic basis for 

phenotypes of unique concern for force protection? 

7. How should personal genomic information be handled to maintain the security of that 

information? 

These questions become particularly important given the striking advances in DNA 

sequencing technologies that have reduced both the expense and the time needed to collect the 

near-complete DNA sequence of an entire human genome. This capability will provide 

researchers with a considerable increase in data important for correlating genetic differences with 

disease and other phenotypic traits. Furthermore, this capability will provide medical personnel 

with a detailed map of the genetic distinctions of individual patients, which may be used to make 

diagnostic and therapeutic decisions. 



2.1    Scope of the Study 

To address the questions from our study charge, we first considered the technical advances in 

DNA sequencing technology. We were particularly interested in assessing whether future DNA 

sequencing platforms could deliver DNA sequence data at a cost and speed that will enable 

personal genome sequences to be collected for all military personnel, and with the accuracy 

necessary for medical applications. We examined the current utility of this data for making 

phenotypic predictions, evaluated research models for correlating genetic markers with 

phenotypes, and considered biological mechanisms other than DNA sequence that may confound 

attempts to predict phenotypes based solely on DNA sequence data. Particular attention was 

given to the human microbiome, which is large, complex, and can have important influences on 

normal human function and disease. 

Our efforts were aided by the following briefers who we thank for their helpful insights and 

discussion: 

DNA Sequencing Technologies 

Eric Schadt - Chief Scientific Officer, Pacific Biosciences 

Jonathan Rothberg - Founder and Chief Executive Officer, Ion Torrent 

Omead Ostadan - Vice President of Marketing, Illumina 

Jeff Schloss - National Institutes of Health 

Genotype/Phenotype Correlations 

David Galas - Senior Vice President for Strategic Partnerships, Institute for Systems Biology 

David Haussler - Professor, University of California, Santa Cruz 

David Altshuler - Professor, Harvard Medical School and Broad Institute 

Epigenetics 

Barbara Wold - Professor, CalTech 

Human Microbiome 

Rob Knight - Assistant Professor, University of Colorado 

Personal Genomics 

Anne Wojcicki - 23andMe 

DoD Applications 

Randall Kincaid - Scientific Director, TMT, Defense Threat Reduction Agency (DTRA) 
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2.2    The Challenge of Sequencing and Assembling Human Genomes 

The utility of personal genomics will rely in part on the collection of genetic data that can be 

correlated with human traits. There will be many genetic markers such as common single- 

nucleotide polymorphisms (SNPs), gene deletions and gene duplications that will be indicative 

of phenotypic outcomes. However, many rare SNPs and other types of genetic variations will 

also be informative. Therefore, recording an individual's entire genomic DNA sequence provides 

the maximal amount of genetic information compared to less-comprehensive genetic tests such 

as DNA arrays. 

The past and current state of DNA sequencing technologies were assessed to determine 

whether the efficiency of whole-genome DNA sequencing will progress to a point where it is 

cost-effective for all individuals to have their genome sequence data collected. Various aspects 

of human genome sequencing efforts are discussed below. 
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Figure 1. Size and complexity of human genomic DNA. Top: Number of DNA base pairs in the 
genomes of human immunodeficiency virus (HIV), Staphylococcus aureus (Staph), and the 
nuclear chromosomes of human cells. Bottom: The 23 pairs of human chromosomes carry the 
approximately 3 billion base pairs of nuclear DNA in each cell. The electron microscope image 
includes about 1 million DNA base pairs that have become unspooled from a chromosome. 



Human Genomes and the DNA Sequencing Challenge 

The challenge faced by those who wish to generate a complete DNA sequence of an 

individual's genome is great. The complete set of unique DNA sequences in each diploid cell is 

distributed between mitochondrial genomes (just over 16,500 base pairs in each copy) and 23 

pairs of chromosomes (approximately 6 billion base pairs) (Fig. 1). Each chromosome is not 

sequenced as an individual unit, but rather all chromosomes from many cells are randomly 

fragmented into pieces ranging from -100 to -1000 nucleotides in length and these fragments 

are then sequenced. These DNA sequence "reads" are then reassembled into their original 

genetic context using computer algorithms that identify overlapping identity between millions of 

sequenced fragments. As noted later, this sequencing and reassembly strategy creates challenges 

when working to obtain a complete and error-free genome sequence. 

Sanger 
Sequencing 

454 Life 
Sciences 

lllumina Applied 
Biosystems 

DNA isolation 
method 

Bacterial clone PCR on beads PCR colonies PCR on beads 

Paralellize 
method 

Capillary array Microfab plate Surface clusters Magnetic surface 

Sequencing 
method 

Dideoxy chain 
termination 

PPi-mediated 
fluorescence 

Fluorescent dNTP 
incorporation 

Fluorescent oligo 
incorporation 

Read length 
(bp) 

800 400 100 50 

Reads per run 384 1,000,000 200,000,000 1,000,000,000 

Throughput 300 kb / hr 0.5Gb/10hr 30 Gb / 10 days 50 Gb/14 days 

Figure 2. Comparison of the major forms of DNA sequencing platforms used over the last two 
decades. 

DNA Sequencing History 

For two decades following the mid 1970s, nearly all DNA sequence data was collected by 

using either Maxam-Gilbert DNA sequencing (selective chemical modification) (Maxam and 

Gilbert, 1977) or Sanger sequencing (Sequence by Synthesis [SBS] chain termination) (Sanger 

and Coulson, 1975) methods (Fig. 2). Both methods, sometimes called first-generation 

sequencing systems, involved extensive preparative work and allowed an individual research to 

sequence -100 nucleotides per sample per day. Due to technical constraints of the Maxam- 

Gilbert sequencing and due to the accuracy of DNA sequence reads from the Sanger method, the 
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latter method became more widely used by individual research laboratories. However, the 

manual nature of the protocol and the lower-resolution slab gel separation limited Sanger 

sequencing typically only to the determination of gene-sized short stretches of genome sequence. 

By the 1990s, portions of the Sanger protocol were being automated and capillary 

electrophoresis with fluorescently-labeled chain terminators allowed longer read lengths and 

faster analyses to be achieved. Dozens of samples could be run in parallel, and dozens of 

machines running constantly were used to sequence large portions of genomic DNA from many 

species. Partial automation of the Sanger protocol enabled a single instrument to sequence 

hundreds of thousands of DNA nucleotides per day. This capability was an important component 

of the molecular biology revolution of the late 20th century. Furthermore, instead of sequencing 

specific purified clones of genome fragments, researchers expedited the process by sequencing 

random fragments of the target genome, and used computer algorithms to reassemble the short 

reads into contiguous genome sequences. These technical advances facilitated the sequencing of 

entire bacterial genomes, and eventually were used to produce the first near-complete human 

genome sequences. These same technical aspects are still of great interest to those seeking to 

optimize DNA sequencing methods to create faster, cheaper, more compact, and more accurate 

DNA sequence data collection systems. 

Base pairs sequenced per dollar 
10,000.000 

1,000.000 

100.000 

10.000 

LOOO 

2011: $100 

2009 
Ligatwn: SLOOO-S5.000 
Polym*riiation: $50,000 

2005 
100       Capillary 

*l*etropt>orei-is: $50 million 

10 
1995 

| .   Gel flcctrophorein: $3 btllion 

0.01 
1980 1985 1990 1995 2000 2005 2010 

Figure 3. The improvements in DNA sequencing efficiency over time. Costs excludes 
equipment and personnel. Figure adapted from that published previously (Arnaud 2009). 
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Perhaps most importantly, each technical advance has led to exponential reductions in the 

per-base-pair cost of sequencing DNA (Fig. 3). A comparison is commonly made between this 

trend and "Moore's Law" that predicted a doubling of transistor density every 2 years. This type 

of exponential improvement trend can be observed for many other technological areas spanning 

from modes of transportation to the density of energy storage in batteries. Indeed, DNA 

sequencing technologies have advanced at a pace far greater than Moore's Law for transistor 

density, so that it is now possible to order your personal genome sequenced today for a retail 

cost of under -$20,000. This cost will likely fall to less than $1,000 by 2012, and to $100 by 

2013. 

At costs below $1,000 per genome, a number of intriguing applications of DNA sequencing 

become cost effective. For example, researchers will have access to thousands or even millions 

of human genomes to seek correlations between genotypes and phenotypes. Medical doctors will 

be able to order genome sequencing along with the standard laboratory tests, and will likely do 

so if they believe that knowledge of the DNA sequence will facilitate patient diagnosis and/or 

treatment. Even web-based genetic testing service companies will exploit full genome sequences 

to gather and dispense medical and ancestry information, and provide genetic counseling. We 

also see tremendous value for DoD and VA interests, which is the main focus of this study. 
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3     DNA SEQUENCING TECHNOLOGY ASSESSMENT AND 
IMPLEMENTATION 

JASON critically assessed the existing and emerging DNA sequence technologies to 

determine whether routine personalized genome analyses can be realized. It is clear that rapid 

improvements have been made to give rise to existing DNA sequencing systems and that it is 

reasonable to assume that improvements will continue to be made at a similar pace. Below are 

described some of the key technological aspects of DNA sequencing systems that are bringing 

forth a revolution in personalized genomics. 

3.1    Current DNA Sequencing Technologies 

Personalized genomics can be greatly facilitated by the ability to rapidly sequence human 

genomes with high accuracy and with low cost. As described below, current DNA sequencing 

platforms (Fig. 3), sometimes described as second-generation DNA sequencing technologies, 

have strived to address key technological factors that limit accuracy and cost, and performance 

(Schadt et al.. 2010). In a number of areas, technological advancements have entered a range 

wherein personalized genomics is viable. Commercial DNA sequencing systems currently used 

to sequence entire human genomes are listed below along with their key features. 

Machine Technology/Features 

454/Roche 

Solexa/Illumina 

Helicos 

DNA colonies on beads sequenced by fluorescent monomer incorporation 

DNA colonies on a surface sequenced by fluorescent monomer 

incorporation 

Single DNA molecules on a surface sequenced by fluorescent monomer 

incorporation 

ABI SOLiD 

Dover Polonator 

DNA colonies on beads attached to a surface and sequenced by 

fluorescence oligomer incorporation 

DNA colonies on beads attached to a surface and sequenced by 

fluorescence oligomer incorporation 

13 



Sequencing speed Nearly all commercial DNA sequencers operate via sequence by synthesis 

(SBS) technologies, wherein the selective addition of a single nucleotide (or the selective ligation 

of a short oligonucleotide) is required to read out the identity of the nucleotide being evaluated. 

Although these reactions typically occur on a sub-second or a sub-millisecond timescale, the 

systems require stepwise reagent additions and washes that occur on a timescale of seconds due 

to fluidics limitations. However, these reduced timescales also allow data acquisition to occur 

with reduced probability of error. 

These slow speeds mean that it is not possible to sequence long stretches of DNA with 

existing technologies. Therefore sequencing the millions of nucleotides of a typical bacterium, or 

the billions of a human in the context of intact chromosomes is not achievable. To overcome this 

problem, existing commercial DNA sequencing platforms do not sequence entire chromosomes 

intact, but rather sequence very short fragments (-30 to -1000 nucleotides) in a massively 

parallel fashion, and then use computer algorithms to reassemble these fragments to yield to the 

genomic sequence DNA within its proper linkage context. The genomic DNA is fragmented, the 

short DNAs are uniquely distributed to different reaction wells or locals, and these are each 

sequenced in place. 

Sequencing Accuracy. The optimal DNA sequence data set for any organism is a 100% 

accurate collection of nucleotide sequences that are assembled into their appropriate 

chromosomal units. However, practical considerations necessary to drive sequencing speed 

higher and costs lower can cause compromises in the completeness and accuracy of datasets. 

Errors usually enter this process due to misreading the output from the sequencing reactions or 

by errors in reassembling the sequence fragments into contiguous chromosomal units. A system 

that sequences single molecules may reduce reagent cost and increase sequencing speed, but also 

may be more prone to errors in the sequence reaction event (e.g. an error by DNA polymerase) 

compared to methods that sequence clusters of identical DNAs in a reaction well. 

Errors caused by the data recording instrumentation or by the inability of the analysis 

software to make the correct nucleotide call will introduce errors regardless of the type of 

sequencing strategy used. These errors can be reduced dramatically by collecting DNA sequence 

data far in excess of the number of nucleotides in the organism's genome. For example, 

assembled genome sequences are typically done with ~30-fold sequencing coverage, which 

means that each nucleotide has on average been sequenced 30 times. Since the fragments are 
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randomly generated and randomly sequenced, there are some nucleotides that have greater 

sequencing coverage than others. 
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Figure 4. Reductions in the cost of sequencing complete human genomes over time. Examples 
given are for published human genomes with the exception of the lllumina HiSeq 2000 which 
was recently released. Size of circle represents the relative cost, where Venter equals $1M. Red 
circle for the lllumina HiSeq 2000 encompasses the actual data point, which reflects the 
characteristics of the system (2 to 3 human genomes per run with a wholesale reagent cost of 
~$ 1,000 per genome). Graphic was adapted from that published by Li and Wang (2009). 

The first bacterial genome sequence datasets included considerable inaccuracy, with some 

genome segments carrying approximately 4% erroneous nucleotide assignments. Even far lower 

error rates can cause considerable problems when conducting bioinformatics analyses. Although 

improving technologies and strategies cannot completely exclude error, the frequency of errors 

can be reduced to levels that are manageable with the current commercial systems. 

Sequencing Cost. The number of nucleotides that can be sequenced per dollar is rising at an 

exponential rate (Fig. 3). Thus, the cost of sequencing complete human genomes is falling 

dramatically, with a rate of-30 fold reduction in cost per year over the last six years (Fig. 4). 

These striking reductions in cost have been made on earlier SBS sequencing platforms largely by 

increasing the parallelism of the sequencing reactions (via reducing feature density or size) and 

by optimizing reactions for longer reads. Interestingly, the reductions in cost and read length 

realized by current sequencing systems allow the collection of redundant sequencing reads of 

greater length, which reduces the frequency of errors in the final datasets. 
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3.2    Future DNA Sequencing Technologies 

Numerous companies are working on new technologies, called third-generation sequencing 

systems, that may contribute to further improvements in the parameters discussed above. The 

technologies of three companies were examined in some detail to assess the potential for 

enhanced DNA sequencing speed, accuracy and efficiency, although additional technologies are 

also being pursued (Schadt et al., 2010). 

Company Technology/Features 

Pacific Biosciences    Zero mode waveguide sequencing of single DNA molecules using 

immobilized DNA polymerase and fluorescently-tagged nucleotides. 

Ion Torrent DNA colonies on beads sequenced using CMOS-based pH sensing of 

nucleotide additions. 

Oxford Nanopore       Single DNA molecule sequencing using conductance changes across 

nanopore-studded membranes. 

Pacific Biosciences: Single-molecule DNA sequencing by zero mode waveguide technology. 

Pacific Biosciences is developing sequencing technology that overcomes the need for 

synchronized reagent addition, which should reduce reagent costs, increase read lengths, and 

dramatically reduce the time needed to sequence each nucleotide. The key features of the 

sequencing platform is the use of zero mode waveguide technology to selectively image 

fluorescent mononucleotides as they are added to an elongating DNA chain by DNA polymerase. 

A laser illuminates only the lower third of each reaction well (-100 nm in diameter), which 

contains ~ 20 x 10' ' liters including a single immobilized DNA polymerase and associated 

DNA. This arrangement allows the determination of which distinctly-labeled nucleotide type has 

been bound by DNA polymerase just before its addition to the growing DNA chain, since 

unbound nucleotides spend very short times diffusing through this region of the reaction well 

(Fig. 5). 
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Emission 
Illumination 

Figure 5. Reaction well of a Pacific Biosciences DNA sequencing system. Zero mode 
waveguide technology allows laser illumination of the lower portion of the reaction well, which 
allows imaging of a single fluorescent nucleotide that is retained in the active site of DNA 
polymerase. Unbound nucleotides quickly diffuse in and out of the illuminated region. 

Theoretically, this system should allow very long DNA sequences to be assessed at the speed 

corresponding to the rate for nucleotide incorporation by DNA polymerase. However, camera 

technology is currently insufficient to keep pace with the burst speed of DNA polymerases (-50 

to 1000 nucleotides per second). Therefore, the polymerization reaction is slowed to yield 1 to 5 

nucleotides per second. Other problems include inactivation of DNA polymerase (e.g. via 

denaturation or laser-induced destruction) that limit the read length. However, improvements in 

these hardware and biological components are to be expected, and single-molecule sequencing 

using this method should yield considerable improvements over second-generation sequencing 

systems. Representatives at Pacific Biosciences project that by 2014, a system will be 

operational that collects a 300 gigabase dataset collection within 15 minute runs with each of 

160,000 wells operating at 50 nucleotides per second read speed. 

Ion Torrent: DNA sequencing by CMOS-basedpH sensing. Ion Torrent has developed DNA 

sequencing chips based on CMOS (complementary metal-oxide-semiconductor) technology. 

This system uses multiplexed and miniaturized ion sensors to detect the release of a hydrogen 

ion that results from the addition a DNA nucleotide to the growing DNA chain during synthesis 

(Fig. 6). This detection technology avoids the use of chemically modified reagents (e.g. 
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fluorescent nucleotides), but retains the need for synchronized synthesis on clusters of DNAs to 

generate sufficient change in pH to reliably detect nucleotide additions. 

Figure 6. Schematic of the DNA polymerization event that releases a proton. Clusters of 
identical DNAs undergoing synchronized synthesis temporarily lower pH of the reaction well, 
which is monitored by individual ion sensors. 

Reductions in reagent cost coupled with the relatively inexpensive cost of the machine mean 

the overall cost of sequencing is reduced substantially over existing second-generation systems. 

Initial Ion Torrent chips carry feature sizes of 350 nm, 23 million sensors per chip, and allow 30- 

fold sequencing coverage of a human genome for under $6,500. However, these chips are made 

using chip fabrication facilities constructed in 1995. Dramatic reductions in feature size and 

density can be achieved simply by using more recent chip fabrication facilities, which effectively 

leverages the investments made to improve computer chip feature density to create massive 

improvements in DNA sequencing capability. Therefore, DNA sequencing chips that permit 

complete collection of a human genome for less than $100 seems within easy reach. 

18 



Figure 7. DNA sequencing using nanopores. In one possible architecture, a DNA to be 
sequenced is successively cleaved by a nuclease (top) and the released nucleotide enters a protein 
nanopore (middle). Temporary blockage of the pore changes current flow in a manner distinct to 
each nucleotide type, which is recorded and converted into nucleotide sequence data (bottom). 

Oxford Nanopore: DNA sequencing by nanopore-based DNA threading. A less-mature 

method for DNA sequencing involves the use of a protein nanopore and associated protein and 

surface components to evaluate the sequence of a single DNA molecule (Clarke et al., 2009). In 

one system envisioned, a nuclease protein is fused to a hemolysin protein pore that penetrates a 

lipid or silicon barrier (Fig. 7). A single DNA strand is bound by the nuclease, which 

processively cleaves and releases single nucleotides. These nucleotides then travel through the 

pore and are detected by recording the electrical current that flows through the pore. The release 

of specific nucleotides are successively determined based on the distinct pore currents and the 

dwell times associated with the passage of each nucleotide type through the adjoining nanopore. 

Multiplex arrangement of nuclease/pore complexes and the associated sensors could give rise 

to an efficient DNA sequencing system that uses no specialized reagents. However, the 
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biological-derived components of the system likely will require considerable molecular 

engineering to perform the tasks with the right characteristics necessary for the system to 

compete with other sequencing technologies. Also, creating large multiplexed arrays of pores 

and their associated detectors will require technological advances. Additional variations of 

nanopore DNA sequencing are being pursued, but likewise, numerous technical challenges must 

be overcome for this general approach to become practical. 

3.3    Who is Buying DNA Sequencing Machines and What are Their Goals? 

The market for DNA sequencing hardware was $480M in 2008, and sales are expected to 

increase approximately 20% annually through 2013. These machines can cost up to $750K per 

unit, which restricts their sales to well-funded academic laboratories (single units) or to 

university core facilities, research institutes, and pharmaceutical companies (multiple units). In 

addition to permitting full genome sequencing to be achieved, these machines are allowing 

researchers to conduct new types of biological studies that demand high-throughput DNA 

sequencing data. Such studies commonly involve the analysis of the collection of transcripts that 

are made by cells or the collection of DNAs that may be bound by specific transcription factors. 

An example of a use in drug discovery is the resequencing of the genomes of bacteria that have 

become resistant to antibiotics. 

In addition to the typical users, there have been several high-profile large-scale purchases of 

machines by individual institutes. The Broad Institute in Cambridge MA has recently announced 

the purchase of 51 Illumina HiSeq 2000 machines (combined list price of $38 M). Each Illumina 

HiSeq 2000 machine can sequence the equivalent of 2 to 3 human genomes for each 10-day run, 

to give a minimum of 73 genomes per year at an approximate wholesale reagent cost 

approaching $1,000 per genome. 

The Broad Institute services the DNA sequencing needs of their associated scientific 

community, and so some of this new sequencing capacity will be used for this purpose. 

However, the Institute and their collaborators also have access to -200,000 human DNA samples 

that are coupled with well-established phenotypic data, and they plan to begin sequencing these 

samples to correlate genotypes with phenotypes. However, it is noteworthy that 51 HiSeq 2000 

machines operating continuously can sequence almost 4000 genomes per year, but this still 

would require 50 years to sequence all of the samples currently held by the Broad Institute. 

Therefore it is certain that third-generation sequencing machines will be required to complete the 

sequencing of these samples in a reasonable timeframe. 
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A remarkable purchase of 128 Illumina HiSeq 2000 machines (~$95M) has recently been 

made by the former Beijing Genome Institute (now called BGI), located in Hong Kong. Reports 

suggest they have various plans for these machines, which have the capacity to sequence -8,000 

human genomes per year. This private institute used bank loans and grants to purchase these 

sequencers, and they are striving to turn a profit with their DNA sequencing operations. To this 

end, they are conducting a fee-for-service business with collaborators around the globe. For 

example, they previously collaborated with researchers at the University of Copenhagen to 

sequence the genome of a 4,000-year-old frozen man from Greenland, and split the -$500,000 

cost. In addition to this activity, they are conducting internal research programs to sequence and 

analyze 10.000 bacterial genomes, 1,000 plant genomes, and numerous human genomes 

(Cyranoski 2010). A particularly noteworthy project they have publically discussed involves the 

sequencing of 2,000 school children to look for markers that correlate with educational test 

scores. 

Given that DNA sequencing costs are dropping by -30 fold per year, the advantage gained 

by investing heavily in one existing DNA sequencing technology is unclear. Although the Broad 

Institute and BGI are currently among the world leaders in DNA sequencing capacity, their 

systems will be rendered obsolete within two years, when a single machine will have more 

capacity than their combined ~$90M investment has given them in 2010. However, if this 

existing capacity, purchased at a premium cost, gives them an opportunity to more quickly make 

valuable correlations between genotype and phenotype, or if this capacity allows them to become 

the established market leader in a fee-for-service operation, or if this data allows them to make 

significant strides in pharmaceutical development, then the investment may have been most 

worthwhile. 

21 



4  THE ERA OF PERSONAL GENOMICS HAS ARRIVED 

Given the initial high cost, among the first individuals to have their genomes sequenced have 

been heads of human genome sequencing teams, or researchers who developed their own 

sequencing systems. Given the striking pace of DNA sequencing methods development, well- 

funded genome center laboratories are currently acting on plans to sequence thousands of 

humans and other organisms whose genomes are equally complex. Even at this time, the cost of 

collecting the genomic data for an individual is within reach to the curious or to patients whose 

physician believes that a genome sequence may help with disease diagnosis or treatment. 

Illumina is using their HiSeq 2000 machines to sequence human genomes for a fee. but has 

provided sequence data for free in special medical cases. 

Such requests for complete genome sequence data collection would remain in the realm of 

the well-funded laboratory or of the wealthy without the development of third-generation DNA 

sequencing systems. However, as described in Section 3 above, the cost, speed and accuracy of 

DNA sequence gathering is certain to improve rapidly. At a retail cost of under $500. collection 

of an individual's genome sequence becomes similar in cost to a typical medical diagnostic- 

ordered by a physician. When this cost threshold is reached, millions of patient's genomes could 

be sequenced if associated criteria for large-scale human genome sequencing are also met. These 

associated issues are briefly noted below. 

DNA sequence data versus genome information. It is important to note that DNA sequencing 

systems only generate sequence data. Interpreting the meaning of this data to make appropriate 

medical decisions involves non-trivial data processing steps including accurate genome 

reassembly and predictions of phenotypes based on this sequence data. For example, 

reassembling raw sequence reads to form complete chromosome-size reconstructions is 

complicated by the presence of repetitive regions of the human genome. Also, any errors in 

sequence reads that are not eliminated by employing multiple read coverage of each nucleotide 

may be interpreted as single-nucleotide polymorphisms (SNPs). which may lead to a false 

prediction of phenotype. Of greater concern is the dearth of knowledge on the impact of genetic 

differences on many disease or normal phenotypes. These topics will be addressed in greater 

detail in later sections. 

DNA arrays versus DNA sequencing. DNA arrays use immobilized DNAs as hybridization 

probes to selectively bind to DNA or RNA sequences in a biological sample. The arrays are 

limited in that they only can detect the sequences they are designed to target. Thus. DNA arrays 

2} 



are usually designed to selectively report the presence of specific sequences that have proven 

biological meaning, such as SNPs that are indicative of disease phenotypes. In contrast, complete 

genome sequencing will report the presence of any sequence signatures, including those whose 

biological implications are as yet unknown. The collection of complete personal genomes on a 

large scale could be limited if DNA arrays can be used to gather the most pertinent information 

more cheaply. 

In the past, DNA arrays have been a far more economical platform to gather large SNP and 

other genetic diversity data sets. However, they are less well suited to identify novel DNA 

variation that would be useful to diagnose rare genetic diseases or to carry out exploratory 

studies to identify new SNP-phenotype correlations. Regardless, the rapid reductions in genome 

sequencing costs will likely permit users of genetic variation information to collect all sequence 

data for the same or less cost than collecting a partial set with DNA chip systems. Therefore, 

complete genome sequencing will likely soon replace DNA chips for the collection of DNA 

variation data in large-scale exploratory studies. DNA chip systems are likely to be used only 

when precise and well-validated genetic variation is sought and if the DNA chip platform is 

lower in cost compared to complete genome sequencing. 

Correlating human genetic variation with phenotypes. Genetic variation such as SNPs can 

alter the sequence of proteins by changing the codons of a gene. These changes can be highly 

predictable based on our understanding of the genetic code. However, mutations can also occur 

in a promoter region of a gene or in key processing signals of the corresponding messenger RNA 

that can change the amount of protein production. Given the incomplete knowledge of these 

genetic control elements, the effects of sequence variation in these regions are less predictable. 

Moreover, not all genes code for proteins, and there is an increasing recognition that large 

numbers of noncoding RNA transcripts play important roles in human cells (Wilusz et al., 2009). 

There is no predictive paradigm equivalent to the genetic code for interpreting mutations in the 

vast regions of the human genome that do not code for proteins. 

Even more confounding is that validated effects of genetic variation on protein expression or 

function do not always lead to a specific phenotype with 100% certainty. Proteins operate in a 

complex milieu of other proteins, biopolymers and metabolites and so the partial or even 

complete disruption of an individual protein's function could be offset by the action of a 

redundant protein or otherwise have imperfect effects that are mitigated by complex cellular 

adaptations. Furthermore, epigenetic effects wherein phenotypes are derived from factors other 

than nucleotide sequence appear to be a major determinant of human phenotypes. 
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It may be more common to see SNPs correlate imperfectly with disease or other phenotypes, 

such that the detection of a SNP in an individual can at best be used to provide a probability that 

the person will develop a particular disease sometime in the future. One of the greatest 

challenges in developing personal genomics applications will be the identification of validated 

correlations between genetic signatures and important phenotypes. Limitations to personal 

genome sequencing may be encountered if the medical community determines that the utility of 

complete genome sequence data is excessively hindered by the lack of validated correlations 

between genetic variation and phenotypes. Aspects of this important area of research that bear on 

phenotype predictions will be discussed in detail in a later section. 

Infrastructure for large-scale personal genome sequencing. Within the next several years, 

third-generation DNA sequencing systems likely will be available that allow the widespread 

sequencing of personal human genomes. Along with the requirements for numerous sequencing 

machines, the space to house them, and the reagents and individuals needed to operate them, 

there are other infrastructure needs that accompany any high-throughput DNA sequencing 

operation. Initially. DNA samples must be collected and stored, at least until the sample has been 

sequenced. It may also be advantageous to archive these DNA samples indefinitely, particularly 

if long term epigenetics studies are planned. 

The demand for computing and data storage capacity also will likely be large. Raw sequencer 

data (e.g. fluorescent image data, conductance data, etc..) must be stored until the DNA 

sequence reads can be made. DNA fragment sequence data must be stored until the genome 

sequence can be properly assembled. Finally, the complete genome sequence must be stored at 

least until the desired genetic information has been obtained. Again, it may be advantageous to 

store genome sequence data for the life of the individual and beyond, and use medical and 

performance records to link genetic data to disease and other phenotype data. 

Although there are many facets to establishing the infrastructure necessary to conduct 

genomic data assessments on a scale required for personalized genomics. several companies are 

beginning to address these needs and are likely to create viable data collection and analysis 

pipelines beginning with sample collection and ending with a genotypic and phenotypic report 

that is delivered to customers. The developments made by the commercial efforts in personal 

genomics could be leveraged by the DoD to carry out personal genomics analyses on military 

personnel. 
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5  CORRELATING GENOTYPE WITH PHENOTYPE 

In some instances, genetic diseases or other human phenotypes will be readily deducible 

from personal genome sequence data. Highly predictable traits typically follow simple 

Mendelian inheritance wherein a single gene is the causative genetic factor. For example, sickle 

cell anemia typically is caused by a single readily-detected mutation in the P-globin gene. 

Individuals who carry one mutant copy and one normal copy of this gene are resistant to malaria 

infection, whereas two mutant copies of the gene results in sickle cell anemia. A similar trait 

with simple Mendelian characteristics is susceptibility to chronic beryllium disease or berylliosis. 

Certain variants of human major histocompatibility complex (MHC) class II proteins allow 

presentation of beryllium to T cells, thus causing inflammation (Dai et al. 2010). 

Unfortunately, most common diseases and other phenotypes of interest are not monoallelic. 

but rather have complex multi-factor origins that are derived from genetic and/or epigenetic 

factors or influences. Thus, predictions of phenotypes based on DNA sequence and/or epigenetic 

data will be imperfect, and provide only a probability estimate that a particular phenotype will 

manifest. Given these challenges, there will be inaccurate assessments of risks based on 

genotypic markers, and it will take decades of careful research to produce highly accurate 

information for most phenotypes of interest. 

5.1   Ongoing Efforts to Correlate Genotype with Phenotype 

The explosion of available human genome sequence data will provide researchers from 

academia and industry with the genetic information necessary to conduct large-scale efforts to 

link genetic markers with human traits. Furthermore, the genetic information must be gathered 

from individuals who have documented diseases or other traits. These analyses, commonly called 

"genome-wide association studies" or "GWAS" do not require any hypothesis regarding the 

origin or mechanism of the disease or trait, but rather rely on the identification of correlations 

between the phenotype and a genetic marker or sets of markers. 

Whereas previous efforts to link genes with phenotypes largely have been focused on 

addressing a single mutation or a single trait, GWAS studies have begun to focus on entire 

genomes and multiple traits. These studies can be conducted on groups of unrelated individuals. 
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but there are particular advantages if the individuals are genetically related (Roach et al. 2010). 

As the number of validated correlations between genetic markers and traits grows, assessment of 

an individual's genome sequence and its impact on traits will become more informative (Ashley 

etal. 2010). 

Pharmaceutical and academic laboratories, as well as private personal genome companies, 

have the technical and financial resources necessary to make considerable advances in this area, 

and it is evident that they are accelerating genomic data collection and related discovery work at 

an unprecedented pace. Potential major contributors to this effort are personal genome 

companies. These companies collect biological samples from customers who are curious about 

their genetic make-up and wish to receive information on their heritage and various traits. These 

companies conduct genotype analyses (for example by using gene chips that report the presence 

of single-nucleotide polymorphisms), and then report on the known correlations between these 

SNPs and various diseases or other traits. Interestingly, private citizens appear to be willing to 

fund this data collection, as well as to provide personal health and trait information that may be 

difficult for studies conducted by pharmaceutical companies or academic scientists. This 

willingness of the general public, aided by internet-based organizational systems, has yielded 

novel genetic correlations with human traits in a surprisingly efficient process (Eriksson et al. 

2010). Despite these impending advances, additional factors noted in the next section will 

impede the full assessment of human traits. 

Given these advances and limitations, several major outcomes are likely to occur: 

• New genetic links to many phenotypes in addition to disease phenotypes will be revealed 

at a rapid pace by industry and by academia, perhaps using entirely new models for 

conducting GWAS studies. 

• Many of the new discoveries will be revealed to individuals over the internet on a fee-for- 

service basis, with companies and customers for their information spread across the 

globe. 

The quality of the predictive information will be mixed, and is likely to be particularly 

poor for those traits that have complex origins and many contributing factors. 

• Given the current state of technology (e.g. the lack of inexpensive access to a complete 

dataset for the human epigenome), there will be many phenotypes that may be difficult to 

predict based solely on easily obtainable genomic and epigenomic data. 
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5.2    Issues that Confound Genotype/Phenotype Correlations 

Epigenetics, beyond DNA sequence. Although the term "epigenetics" was first used more 

than 60 years ago before the basic molecular details of inheritance were elucidated, epigenetics 

today refers to the study of heritable traits that arise from changes other than changes in DNA 

sequence (Jirtle and Skinner, 2007). It is now known that many key biological features inherited 

from parent cell to daughter cell or from parent organism to progeny, including those relevant to 

human disease, are mediated by mechanisms that do not involve simple changes in genome 

sequence. While interpreting the effects of DNA sequence variation on the genetic code is simple 

and highly predictable, an "epigenetic code" is currently lacking and therefore interpreting the 

effects of epigenetic changes cannot yet be assisted by a simple set of rules. Given the 

importance of epigenetic effects on disease and other phenotypes, scientists are working to reveal 

the molecular basis of epigenetic effects on living systems. Some of the above-described 

technologies and approaches to analyze the human genome are also applicable to the human 

"epigenome" (the complete collection of epigenetic changes in an organism). Analogously, the 

characterization and analysis of all epigenetic changes in an organism represents the relatively 

new field of "epigenomics". 

By definition, the effects of epigenetic changes do not arise from modifications to the DNA 

sequence of an organism. Accordingly, epigenetic effects largely arise from differences in the 

way that a given gene is expressed, rather than differences in its sequence. Different cells within 

the same organism, and even the same cell at different points in time, can express dramatically 

different sets of genes. This fact helps to explain why liver cells and brain cells behave so 

differently despite their virtually identical genomes, and why cells in a developing human 

embryo have very different properties than cells in an adult. 

In addition to arising during the natural course of cellular development and differentiation, 

epigenetic changes are also thought to arise from environmental conditions, treatment with 

drugs, aging, diet, and disease. As a result, the ability to characterize the complete epigenome of 

a human has the potential to shed new light on the biological status of an individual as well as 

suggest ways of improving the individual's health, not unlike the impact of revealing an 

individual's complete genome sequence. 

It should be emphasized, however, that while connections between genotype and phenotype 

that are essential to reaping the benefits of human genome sequence data have recently begun to 

be realized, connections between a person's epigenome and phenotype are significantly less well 
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established, even though such connections are widely anticipated to exist. Moreover, in contrast 

to a person's genome which, to a first approximation, is identical between nearly all cells in the 

body, the human epigenome is known to vary widely between different cell types and to change 

over time. The cell-specific and dynamic nature of the human epigenome greatly complicates 

efforts to systematically collect and make use of epigenomic information. These challenges 

underlie the relative infancy of epigenomics compared with genomics. 

Nevertheless, epigenomic data currently can provide valuable and occasionally useful 

insights into human biology and disease. Knowledge of the genome-wide pattern of epigenetic 

marks is currently used as a measure of which genes and which regions of the genome are being 

actively expressed or silenced. Certain patterns of epigenetic change have been connected to 

developmental steps during embryogenesis and can serve as hallmarks of cellular differentiation 

and dedifferentiation. Some human diseases are thought to have epigenetic origins, as evidenced 

by dependence of the occurrence of certain rare human diseases on the epigenetic state of 

maternal or paternal DNA ("genomic imprinting"). In addition, some carcinogens have not been 

observed to induce DNA mutations and thus may be increasing cancer risk through epigenetic 

mechanisms. Finally, teratogens (compounds that induce developmental abnormalities) have 

been observed to induce effects in generations beyond that of the exposed individual, consistent 

with an epigenomic effect. 

EPIGENETIC MECHANISMS HEALTH ENDPOINTS 

ONA It wrappad around 

Figure 8. Major epigenetic mechanisms involve DNA methylation, histone positioning, and 
histone modification. 

30 



At the molecular level, most known epigenetic effects arise from modifications in the 

structure of DNA or the structure of proteins that influence gene expression. However, the 

known collection of possible epigenetic changes ("marks") in a human is expanding (Fig. 8). 

Currently, these changes can be classified into four major categories: (1) methylation of bases in 

genomic DNA; (2) post-translational modification of histone proteins and histone positioning; 

(3) RNA-mediated changes in gene expression; (4) Prion proteins. The first two categories of 

epigenetic marks are much better understood and have been more widely observed than the last 

two. The molecular characteristics of these first two classes of epigenetic changes, their known 

biological roles, and the technologies used to detect these marks are summarized below. 

DNA methylation. A common type of epigenetic mark that can influence gene expression is 

the methylation of cytosine bases in genomic DNA, primarily in cytosines that precede guanine 

(CG dinucleotides), to produce 5-methylcytosine (Fig. 9). Cytosine methylation and CG 

dinucleotides in general have been observed throughout the human genome, and are 

underrepresented within the protein-coding regions of genes. It is estimated that 60-90% of all 

CG dinucleotides are methylated in mammals. DNA methylation is a crucial part of embryonic 

development, cellular differentiation, and X-chromosome inactivation. The process is also 

thought to play roles in suppressing the expression of genome parasites such as some viruses and 

transposons. In some cancers tumor suppressor genes are silenced by DNA methylation. 

contributing to oncogenesis. 

H,C 

cytosine 5-methylcytosine 

Figure 9. Chemical structures of cytosine and 5-methylcytosine. 

Newly synthesized DNA generated by DNA replication is unmethylated. The transfer of a 

methyl group to cytosine is mediated by a class of enzymes called DNA methyltransferases and 

several of these enzymes have been characterized in humans. The properties of one DNA 

methyltransferase in particular, DNMT1, demonstrates one way in which epigenetic marks can 

be inherited. DNMT1 binds especially well to replicating regions of DNA that are 

hemimethylated (methylated on one strand only) and it is thought that by preferentially binding 
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to hemimethylated DNA, DNMT1 methylates the newly synthesized, non-methylated strand and 

thereby copies the methylation marks from a parent cell to a daughter cell. It is also known that 

the methylation state of DNA in germ line cells can persist in newly fertilized eggs. 

Regions of DNA that contain methylated cytosines generally are less transcriptionally active 

and suppressed in gene expression. The mechanism of this suppression is not entirely 

understood, but methylcytosine binding proteins that are attracted to 5-methylcytosine and 

promote condensation of nearby DNA into transcriptionally silent chromatin have been 

implicated in the process. In addition, some protein transcription factors that are necessary for 

the expression of certain genes are thought to bind more poorly to methylated DNA. 

Several techniques have been developed to detect methylated DNA. For example, certain 

restriction endonuclease enzymes will only cleave DNA containing methylated, or unmethylated, 

cytosines. Antibodies also exist that can bind specifically to methylated, but not unmethylated, 

DNA, enabling fragments of methylated DNA to be isolated and then identified by binding to 

specific sequences present in DNA microarrays. 

Techniques for methylated DNA that can be applied in a genome-wide manner are of 

particular interest. Sodium bisulfite reacts with unmethylated cytosines, but not methylated 

cytosines, to produce uracil. Most DNA sequencing methods including those described earlier in 

this report read uracil as thymine (T). As a result, comparing the sequence of DNA before and 

after bisulfite treatment can reveal unmethylated and methylated cytosines on a genome-wide 

scale with a speed and cost that is near equivalent to that for conventional DNA sequencing. 

Therefore, it is reasonable to expect that large-scale personal epigenomics data will be collected 

in the future. However, it is important to note that DNA methylation patterns vary from cell to 

cell, change over time, and are affected by environmental conditions. Thus it is currently 

impractical to collect a complete DNA methylation epigenome data set at this time. 

Histone protein modification. Covalent modifications to histone proteins represent the second 

major class of epigenetic changes. Histones are highly positively charged proteins that serve as 

molecular spools around which highly negatively charged DNA is wound and organized to form 

nucleosomes (Fig. 10). Covalent modifications to histones that have been observed in cells 

include methylation, acetylation, and phosphorylation, among other changes. These 

modifications are especially prevalent at the N-termini of histone proteins, known as the "histone 

tails". The most well-characterized of histone modifications are acetylation and methylation of 

lysine residues within histone proteins. 
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Acetylation of histone lysines is thought to result in the activation of gene expression. 

Simplistically, lysine acetylation transforms a positively charged lysine residue into a neutral 

acetyllysine residue. As a result, histone proteins that are highly positively charged before 

acetylation become less positively charged and are less strongly attracted to DNA. This 

weakening of the histone protein-DNA attraction liberates DNA from its previously bound state 

and facilitates binding of transcription factors to DNA, stimulates transcription, and increases 

gene expression. Conversely, histone deacetylation can repress gene expression. Methylation of 

histone lysine residues, in contrast, has been observed to either activate or suppress gene 

expression, depending on which histone lysine residue is being methylated and even depending 

on the location of the gene relative to the histone protein. Some of the enzymes that catalyze the 

acetylation, methylation, deacetylation, and demethylation of histone proteins have been 

identified and characterized. 

Figure 10. A nucleosome structure formed by DNA wrapped around a core of histone proteins. 
The positions of nucleosomes in genomic DNA and the modification state of the associated 
histones influence gene expression. 

Since DNA can retain its associated histone proteins after DNA replication takes place, the 

modification state of DNA-associated histones can be inherited from parent cell to daughter cell 

after mitosis. In a manner analogous to the action of DNMT1, it has been suggested that the 

presence of modified histones on a newly replicated genome can induce the modification of other 
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nearby histories, providing an additional mechanism by which the modification state of histone 

proteins can be passed on during cell division. 

The most common methods to detect histone modifications rely on antibodies raised to bind 

specifically to methylated (or acetylated, non-methylated, or non-acetylated) histone proteins. In 

one popular suite of techniques known as chromatin immunoprecipitation (ChIP), genomic DNA 

with bound histones is fragmented, and fragments containing specific histone modifications are 

isolated by precipitation with the abovementioned antibodies. The precipitated DNA fragments 

are inferred to be bound to histone proteins with the specific modification of interest, and are 

identified in a genome-wide manner by exposure to a DNA microarray or by high-throughput 

DNA sequencing, or in a gene-specific targeted manner by PCR. As with all antibody-mediated 

techniques for identifying epigenetic changes, the quality of the resulting data is strongly 

dependent on the binding specificity and affinity of the antibodies in use, many of which are of 

questionable quality. 

Because the modification state of histone proteins determines their ability to repress or 

activate gene expression, a wide variety of biological processes including those central to human 

development, responses of human cells to environmental cues, and changes in gene expression 

associated with many human diseases are thought to be impacted by histone modification. 

However, the diversity of modifications, the variable sites and extents of these modifications, 

and the different effects these modifications can have on chromatin structure and gene 

expression are confounding aspects of epigenetics that preclude the rapid collection of a 

complete set of these epigenetic marks. 
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6       MICROBIOMICS - THE IMPORTANCE OF MICROBES ON HUMAN 

PHENOTYPES 

Another influence on human phenotypes that is not accessible by evaluating personal 

genomic data is the human microbiome. The diversity of microbial species associated with each 

person is vast, distinctive and highly variable. However, until recently, researchers have mostly 

ignored these organisms unless they are the direct causative agents of bacterial or viral 

infections. NIH has established the Human Microbiome Project to "generate resources enabling 

the comprehensive characterization of human microbiota and analysis of its role in human health 

and disease". Such research efforts should provide a clearer understanding of the types of 

organisms that are present under normal circumstances, and provide a sense of the effects of 

these organisms on human phenotypes, including disease. 

6.1    The Diversity and Scale of a Personal Human Microbiome 

The microbial flora in a human gut (~1014 cells) and on human skin outnumbers the human 

cells in your body (~1013) by over 10 to 1. As many as 10,000 distinct species of microorganisms 

and viruses can be associated with each person. Although bacterial genomes have about an order 

of magnitude fewer genes per genome, the great diversity of microbial species associated with 

humans means that the diversity of microbial gene functions may exceed that of human DNA by 

100 fold. 

Traditionally, the medical community has been exclusively focused on viral or bacterial 

species that are clearly linked with infections. Bacterial pathogens or their disease phenotypes 

typically are diagnosed and an appropriate course of antibacterial therapeutics is delivered to kill 

the infectious organism. However, researchers are now beginning gather data suggesting that 

some common human phenotypes, such as obesity or drug tolerance/efficacy, are influenced by 

the microbes associated with each person. 
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Figure 11. Images of mice with gut microbes for thin (left) versus obese (right) delivered by 
fecal transplant. Image from Vijay-Kumar et al. 2010. 

6.2       Phenotypes Influenced by the Microbiome 

In a recent study (Vijay-Kumar et al. 2010), gut microbes from obese mice were transferred 

to thin mice whose gut microbes were eliminated. This "fecal transfusion" resulted in the thin 

mice becoming obese (Fig. 11), demonstrating that the microbial composition of the gut can 

dramatically affect calorie uptake, most likely by affecting appetite. A similar "fecal therapy" 

approach is used in some instances of Clostridium difficile infection in humans (Schwan et al. 

1983). C. difficile may normally reside in an individual's gut, but rarely causes disease when a 

typical distribution of microbes is also present. However, in cases where the normal bacterial 

species have been reduced (e.g. during treatments with antibiotics), C. difficile becomes the 

dominant species, produces toxin that damages intestinal cells, and can eventually cause death. 

The infection is usually treated with antibiotics, but drug resistant strains can emerge. However, 

the transfer of a fecal sample from a healthy individual to a patient infected with C. difficile can 

repopulate the gut with a normal spectrum of microbes and cure the symptoms of C. difficile 

infection. 

An area of great potential involves the assessment of the effects of microbes on the efficacy 

or toxicity of therapeutic drugs. Given the extraordinary genetic diversity of the gut microbiome, 

it is expected that these organisms (which usually have the first chance to interact with orally 

bioavailable drugs) may express protein enzymes that catalyze metabolic changes to compounds 

that render them inactive or that convert them into toxic derivatives. If true, then metagenomic 

analysis of gut microbes could be used to identify organisms that could cause drugs to be 

inactive or toxic, perhaps allowing their selective elimination via targeted antibiotics treatment, 

followed by delivery of the drug to the patient. 
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6.3    Potential Uses of Microbiome Data 

Individual actions (diet, therapeutic drug use. recent travels) can dramatically influence the 

distribution of microbial species that are associated with each person. This great and ever- 

changing diversity of commensal microbial species is not evaluated by genomics efforts that 

focus on human genome sequence alone. Therefore, assessment of the microbiome of an 

individual, for example by isolating microbial DNA and conducting metagenomic sequence 

analysis, could be useful for a variety of purposes. 

The distribution of microbial species changes dramatically when individuals are treated with 

broad-spectrum antibiotics to favor bacteria that resist the antimicrobial action of the drug. Also, 

the species and their abundances will change in response to the types of food consumed, as 

certain bacteria may have metabolic pathways allowing them to better exploit the types of sugars 

or other nutrients in the diet of their host. This remodeling of the microbial species of an 

individual could be exploited as a new form of tracking, tagging and locating technology that 

exploits the unique microbiome of each individual. A recent history of drug use. foods 

consumed, or locations visited could be predicted based on the distribution of bacterial species 

on skin or in feces. Analysis of microbiome data could also be used diagnostically, by searching 

for genetic signatures of pathogens. Moreover, traces of a person's microbiome signature will be 

left on objects they have come in contact with, such as computer keyboards and door handles, 

just as they may leave traces of their own DNA on these objects. 

Microbiome signatures of entire populations could also provide useful information. For 

example, the identities or unusual microbial genotypes of small populations could be assessed by 

sampling in vehicles, buildings, or the effluent of entire villages. The latter example could be 

scaled up to assess effluent at specific nodes of a sewer system of a major city potentially to 

track individuals to specific locations in the city via their unique genomic or metagenomic 

signatures deposited in sewer systems. Perhaps a more useful version of this approach would be 

to create a "disease weather map" that correlates temporal changes in pathogen metagenomics 

with geography. 
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7      GENOME DATA STORAGE, ANALYSIS AND SECURITY 

As the plans for gathering large numbers of personal human genomes expand, there is a need 

to consider the needs for storage, analysis and security of the resulting data and information. 

Very quickly, it becomes apparent that the costs of these necessary nodes in the pipeline of 

personal genome information become limiting relative to the costs of DNA sequencing. Any 

future large-scale personal genomics effort will need to address a variety of factors related to the 

storage, analysis and security of genomics information. 

7.1    Computational Costs for Genome Data Storage and Analysis 

As the costs of DNA sequence data collection falls, the costs of other needs associated with 

personalized genomics become a greater portion of the total expense. Of particular concern is the 

management and analysis of human genomic data (Richter and Sexton, 2009). The 

computational costs of a single human genome (Table 1) can be measured in dollars, cpu-hours. 

storage, bandwidth or human analyst time. The example below of sequencing of one human 

genome using the Illumina HiSeq 2000 system provides a clear understanding of why this aspect 

of personalized genomics will exceed that of DNA sequence data collection. This example 

considers just the results and cost of initial data processing. Longer term analysis and storage of 

the data will of course increase the total cost. 

Table 1. Costs related to the storage and processing of DNA sequence data from a single human 
genome. Question marks designate unknown parameters. 

Compute Compute Storage Transfer Transfer 
Data Type Format Time Cost Data Size Cost/Year Time Cost 

Raw Image Files .tiff n.a. n.a. 30 TB $36,000 18 days $3,000 

Unassembled Reads .bcl n.a. n.a. 100 GB $120 1.4 hr $10 

Mapped Reads .bam 500cpu-hr $50 100 GB $120 1.4 hr $10 

Assembled Genome .fasta 1500cpu-hr $150 6 GB $7 5 min $0.60 

Differences from Reference 1 ? ? 4MB $0,005 0.2 sec $0.0004 

Raw data generation. An eight-day run of one Illumina Hi-Seq 2000 machine generates 

about 200 gigabases of DNA sequence consisting of 2 billion reads, each about 100 nucleotides 

long. As raw data, the run produces a total of about 60 terabytes (TB) of TIFF image files. This 

large amount of data cannot be efficiently stored, and therefore the system processes the image 
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data to generate DNA sequence data ("base calls") plus a record of the data quality (a code 

indicating the software's estimated error probability for each base call). Illumina's base-calling 

software produces binary files (called .bcl files) containing this information, requiring 1 

byte/base and a total of 200 gigabits (GB) of base-called sequence reads. 

Base-calling is done in near-real-time using built-in software and hardware that is included 

with the machine, so no extra computational costs are assigned to this step. 200 gigabases is 

sufficient to cover two human genomes at 30-fold coverage. 30-fold coverage is approximately 

the minimum required to reasonably reconstruct whole-genome sequence data via shotgun 

sequencing. Therefore it is estimated that, for one human genome, 30 TB of raw image data and 

100 GB are required for one billion unassembled sequence reads including quality values. 

Read mapping. Many analysis tasks involve detecting small differences (substitutions and 

small insertions/deletions) relative to a reference human genome. For this, unassembled reads 

from a new genome sequence data set only need to be mapped (aligned) to the reference. The 

program BWA, an example of the current state of the art in read mapping (using an algorithm 

called the Burrows/Wheeler transform), can map one billion reads in about 500 cpu-hours (Li 

and Durbin, 2009). Mapped reads are stored in a binary format called BAM (Li et al., 2009), 

requiring 1 byte/base and a total of 100 GB for 1 billion reads. 

Whole-genome shotgun assembly. Tasks such as studying large-scale rearrangements and 

structural differences may require de novo shotgun assembly to create a contiguous whole 

genome, which is a harder problem than just mapping reads to a reference genome. Currently, 

assembly algorithms for new sequencing platforms are immature (Miller et al. 2010). There are 

as yet no examples of successful de novo assembly of highly accurate, highly contiguous 

mammalian genomes from Illumina sequencing data. An example of the state of the art is the 

program SOAPdenovo, which has been reported to assemble a human genome from 52-fold 

coverage (Illumina) in 1500 cpu-hr on a 32-core, 512GB RAM system, resulting in 80% genome 

coverage in contigs (continuous overlapping assembly of DNA) of average size 1 kb (Li et al., 

2010). An unannotated diploid human genome assembly is typically stored in FASTA (text) 

format, requiring about 1 byte/base and a total of about 6 GB for one diploid genome. 

Compression. If a large number of assembled genomes need to be stored, this can be done 

efficiently by only storing differences relative to a reference genome. A recent proof-of-concept 

paper showed that a single human genome can be stored in 4 MB, using a 3 GB reference 

genome and a 1.2 GB reference table of the most common single nucleotide polymorphisms 

(Christley et al., 2009). Since the compute costs were not provided, this is shown as unknown 
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(Table 1), but are likely to be less than read mapping or shotgun assembly. However, 

compression of this sort is not yet in widespread use. Current sequence analysis software still 

generally assumes sequence files in FASTA format. The 1000 Genomes Project is currently 

working to standardize a system for compact representation and storage of human genome 

variation. This representation (or something like it) can be expected to percolate into downstream 

analysis software, as pressure from human genome data volume increases. 

Compute cost. Computing cost is estimated at about $0.10/cpu-hr, based on two data points. 

The Amazon.com EC2 compute cloud charges between $0,085 and $2.88 per cpu-hr. The fully 

loaded cost of the Howard Hughes Medical Institute Janelia Farm computing cluster, an example 

of a midsized (4096-core) scientific computing resource for biological research (including 

power, infrastructure, amortized capital expenses, and staffing) is $0.11/cpu-hr . 

Storage cost. Storage cost is about $0.10/GB/month, based on two data points. Cloud storage 

(for example Amazon.com S3) is currently charged at $0.055-$0.150/GB/month. The fully- 

loaded cost of primary high-availability storage on the Janelia Farm computing resource is 

$0.18/GB/month and long-term archival storage is $0.06/GB/month. both including onsite 

backup and offsite disaster recovery. 

Transfer cost (Internet). Network data transfer cost is estimated at about $0.10/GB. based on 

two data points. A 155 megabit OC3 connection (maximum bandwidth 50 TB/month) costs 

about $7500-$40,000 per month, depending on the Internet service provider, which is 

approximately $0.40 - $2/GB. Data transfer out of the Amazon.com S3 cloud is priced at $0.08 - 

$0.15/GB. 

Transfer time. Transfer time is calculated based on a dedicated 155 megabit/sec OC3 

connection, to give a reasonably "typical'* example for a research center. In practice, available 

bandwidth varies quite widely. Many current Internet nodes would have less than OC3 

connectivity. For example, a typical home connection might have 1-10 megabit/sec download. 

Some sites could have much more than OC3 connectivity. One example of a very high end 

exception is the National Science Foundation Teragrid, with participating national Teragrid sites 

interconnected at 10 GB/sec (about 70 fold faster than our chosen example). The cost and time 

required for networked data transfer for large data sets can be prohibitive. Large data sets are 

typically transferred by shipping disk drives. The Amazon cloud, for example, has an efficient 

data ingest system based on overnight FedEx shipping of disks. 
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7.2    Combining Personal Genome Data with Existing Health Records System 

Electronic medical record keeping in the military. The Defense Health Information 

Management Systems (DHIMS) oversees the military's electronic health record (EHR) system, 

which contains the medical records of nearly 10 million military service personnel and their 

families. The first version of this EHR system, named Composite Health Care System I (CHCS 

I), was developed by SAIC and implemented in the late 1980s. It was based on the existing 

Veterans Health Information System and Technology Architecture (VistA). CHCS I relied on 

terminals with a command line interface, connected to a host computer at individual hospitals. 

The second phase of this system, CHCS II, was implemented in the late 1990s and enabled data 

sharing among military health care facilities. In 2004, CHCS II became the Armed Forces Health 

Longitudinal Technology Application (AHLTA), which has a graphical user interface and 

provides more comprehensive access to medical information. AHLTA contains dozens of 

individual modules, covering topics such as medical history, patient visits, medical orders, 

prescriptions, and laboratory test results. It captures approximately 100,000 patient encounters 

per day, both in CONUS and for those deployed overseas. 

AHLTA, currently in version 3.3.3, has become somewhat unwieldy, often requiring 

painstaking data entry procedures. The current version of the manual contains 631 pages, and 

proper use of the system necessitates classroom or web-based training. ALTA is used at nearly 

500 military treatment facilities worldwide. There also are special versions of the system, such as 

AHLTA-Theater (for outpatient facilities in theater), AHLTA-Garrison (for theater hospitals, 

forward resuscitative sites, and U.S. Navy ships), and AHLTA-Mobile (for battlefield use). Even 

the White House Medical Unit uses AHLTA. 

The Veterans Health Administration (VHA) continues to rely on VistA as its EHR system. 

The VHA is the largest single medical system in the U.S., providing care to over 4 million 

veterans, and operating 163 hospitals and nearly 1,000 clinics and nursing homes. VistA is 

organized based on patient encounters at individual treatment centers, rather than aggregated 

patient-specific information, but is currently undergoing modernization to become more 

centralized. VistA consists of a suite of individual applications, rather than modules within a 

common application. 

Although AHLTA and VistA are related by descent, the two systems have diverged to the 

extent that they are no longer compatible. AHLTA must operate under a broad range of 

environments reflecting a command-and-control organization, while VistA serves a single, very 
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large civilian health care provider. Some have advocated merging the two systems, based on 

either of the two architectures, but this is appears unlikely in the near future and will become 

increasingly difficult as the two systems continue to diverge. 

Inclusion of genotype and phenotype data. It would be possible to include genomic and 

epigenomic data within the existing DoD and VHA EHR systems. This would involve a separate 

module within AHLTA or a separate application within VistA. Site-to-site variation in the 

current VistA file structure is a challenge, but presumably will no longer an obstacle once the 

more centralized version of VistA becomes available. The size of genomic/epigenomic datasets 

exceeds the largest datasets currently in these EHR systems. The AHLTA Radiology module and 

VistA Imaging application, for example, include megabyte-sized radiological images, but most 

of the >50 terabytes of data in these systems are text information. Genomic/epigenomic data 

might be stored as differences relative to a reference dataset rather than complete datasets for 

each individual, thereby reducing data storage requirements to the level already implemented in 

the EHR systems. 

Both AHLTA and VistA currently provide a wealth of phenotypic data. This information is 

organized in relation to the flow of patient encounters and treatments, rather than biological 

phenotypes. Nonetheless, it should be possible to mine the stored information to conduct 

hypothesis testing in relation to collected genomic/epigenomic data. Such data mining tools 

already are being applied to the analysis of clinical outcomes (Moody. 2007). 

There are substantial efforts within the research community and various health care delivery 

organizations to correlate genotypic and phenotypic data for the potential improvement of human 

health. The DoD should not duplicate these efforts, but rather seek to leverage them in 

addressing issues that are of special concern to the military. The first step, therefore, is for the 

DoD to determine which phenotypes that might reasonably be expected to have a genetic 

component have special relevance to military performance and medical cost containment. These 

phenotypes might pertain to short- and long-term medical readiness, physical and mental 

performance, and response to drugs, vaccines, and various environmental exposures, all of which 

will have different features in a military context. More specifically, one might wish to know 

about phenotypic responses to battlefield stress, including post-traumatic stress disorder, the 

ability to tolerate conditions of sleep deprivation, dehydration, or prolonged exposure to heat, 

cold, or high altitude, or the susceptibility to traumatic bone fracture, prolonged bleeding, or 

slow wound healing. 
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7.3    Implications of Computational Costs 

The computational costs of even the initial, highly automated data processing pipeline 

needed to produce sequence data suitable to extract biological information is already nearly 

equivalent to the costs of DNA sequencing. Because DNA sequencing costs are dropping much 

faster than computational costs (in cpu-hrs, storage, or bandwidth), computational cost will soon 

dominate the costs of personal genomics data collection and analysis. Storing the actual raw data 

from second-generation sequencing platforms is essentially already out of the question. The "raw 

data" that is more feasible to store are the unassembled reads with quality values, after a 

computational base-calling step has already been done by the sequencing machine. In addition, 

any costs will be increased by the need to store the data securely, derive useful information from 

this data, and eventually couple this information with other data sets such as medical records. 

Even greater challenges lie in downstream computational analyses of the data. The National 

Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) is 

currently developing its latest strategic plan for the next five years. A large component of this 

plan will be devoted to bioinformatics. Because of the rapid advent of high-throughput data 

technologies including DNA sequencing, biology is rapidly being transformed into a data- 

intensive computational science. This raises a number of challenges throughout the biomedical 

research enterprise, including: training biologists in computational analysis; supporting research 

teams of biologists and computational scientists; establishing computational hardware 

infrastructure in biology departments; developing robust analysis software in largely open- 

source, academic environments; designing and managing strong experimental plans for "big 

science" teams in biology that better integrate data generation with data analysis; sharing and 

distributing electronically-readable datasets. Any large research effort in genome sequence 

analysis will face these same issues, and would probably benefit by cooperating or allying with 

the NIH NHGRI, which is probably the leading federal agency in large scale data analysis in 

genomics. 
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8     PERSONAL GENOMICS DATA AND INFORMATION USEFUL FOR 
MEDICINE AND DEFENSE 

8.1       What Personal Genomics Data should be Collected 

Collection of a diversity of personal genetics data would be useful for diagnostic and 

predictive applications. A summary of the key data sets that would be useful are given below. 

Complete Genome Sequences. The complete diploid genome sequences for all military 

personnel should be collected. This can be used to establish the following genetic signatures: 

• Define all the SNPs. InDels (nucleotide insertions and deletions), and copy number 

variances. This information permits correlations to be made between genotypes and 

phenotypes of interest to the DoD. 

• Establish MHC allelic diversity. This information permits the prediction of donor-recipient 

pairs and should be predictive of a person's ability to respond robustly to vaccines and new 

infectious disease challenges. 

Unaligned DNA Sequences. Some DNA sequence reads cannot be assembled as part of the 

human genome, and these sequences are usually discarded. Although the source of some of these 

reads could be DNA contamination, some reads may represent viral or bacterial pathogens that 

have infected the individual. Knowledge of the spectrum of pathogens may be of considerable 

importance. 

Personal T-Cell Repertoire. Collecting the DNA sequences corresponding to the unique 

antibody-coding regions of T-cells may be used to establish allergies and to establish previous 

exposure (and immunity) to various pathogens. 

Human Microbiome. In some cases it may be useful to sequence metagenomic samples of the 

microbiomes that colonize the human gut. oral cavity or other areas of the body. Uses involve 

identifying viral or bacterial pathogens, identifying organisms that are not pathogens but are 

diagnostic for disease or other phenotypes, or can be used as microbiological signatures for 

tracking, tagging and locating (TTL) applications. The timing of data collection may also be 

important if seeking evidence of pathogen infections or gut microbiome changes (e.g. sequencing 

both pre and post mission). 
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Epigenetics Data. Some types of personal epigenetic data may be useful for epigenome- 

phenotype correlations (e.g. DNA methylation patterns, histone modification patterns). However, 

there are considerable technical roadblocks that will preclude the collection of a complete 

epigenome, such as variability between cells, tissues, age, and chemical or environmental 

exposures. 

Data of Importance to the VA. The same data categories listed above should be collected by 

the VA, but correlations made between the DNA sequence or epigenetic data should be made for 

phenotypes of interest for post-service care. 

8.2    Using Personal Genome Information 

In addition to the ethical implications of applying personal genome information, its use must 

be done with careful consideration of the validity of any correlations between genotype and 

phenotype. Acting on genotype information that is not convincingly linked to specific 

phenotypes could lead to erroneous and detrimental decision making. Unfortunately, developing 

a list of validated correlations is made even more difficult by the complex nature of the 

underlying genetic sources for some phenotypes. Most common diseases and other phenotypes 

of interest are not monoallelic, but rather have complex multi-factor origins that are derived from 

genetic and/or epigenetic factors or influences. This poses the following challenges: 

• Predictions of phenotypes based on DNA sequence and/or epigenetic data will be 

imperfect, and provide only a probability estimate that a particular phenotype will manifest. 

• There will not be technologies in the foreseeable future that provide an inexpensive and 

comprehensive dataset for the human epigenome. Therefore, there may be some important 

phenotypes that may be difficult to predict based solely on easily obtainable genomic and 

epigenomic data. 

• Given these challenges, there will be inaccurate assessments of risks based on genotypic 

markers alone, and it will take decades of careful research to produce highly accurate 

information for most phenotypes of interest. 

The human microbiome holds great promise for disease diagnosis, phenotype determinations, 

and for TTL applications. Microbiomes adapt to the types of food and drugs we ingest and are 
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usually specific for a person's point of recent habitation. This is potentially a major untapped 

source of information on a person's health, movements, and recent experiences, and could be 

used to help determine recent contact between objects and individuals. However, given the 

transient nature of the spectrum of microbes in personal microbiomes, very little information is 

available at this time to draw validated correlations between microbiome and health. 

In summary, there are many possible useful outcomes to the arrival of the personal genome 

era, and DoD can position itself to be a leader in areas such as genotype/phenotype correlations, 

or in human microbiome diversity and its influences on health or its utility in TTL. DoD should 

pursue its own unique interests in these areas, and also have the infrastructure and expertise in 

place to position themselves to respond rapidly as new technologies and new findings emerge. 
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9      CONCLUSIONS AND RECOMMENDATIONS 

DNA sequencing is already cheap enough to initiate the era of personal genome sequencing 

and further reductions in cost will make human genome sequencing increase in scope from 

hundreds of people (current) to millions of people (probably within three years). Although 

sequence data collection will not be the rate-limiting step in genome information gathering, there 

will be substantial developments needed in correlating genotype to phenotype, which is limited 

by quality phenotype data and computational systems required to make correlations. 

Despite these challenges, the DoD and the VA may be uniquely positioned to make great 

advances in this space. DoD has a large population of possible participants that can provide 

quality information on phenotype and the necessary DNA samples. The VA has enormous reach- 

back potential, wherein archived medical records and DNA samples could allow immediate 

longitudinal studies to be conducted. 

Primary Conclusions: 

1. The $100 genome is nearly upon us. and soon the cost of DNA sequencing will no longer 

be a limiting factor in genomic analysis. 

2. The era of personal genomics has already begun, but the practical application of genomic 

information has thus far been limited. 

3. Broader application of genetic information will require deeper knowledge of genotype- 

phenotype correlations, a subject of substantial, ongoing research. 

4. Many phenotypes of relevance to the DoD are likely to have a strong genetic component, 

for which better understanding may lead to improved military capabilities. 

5. Certain phenotypes will also depend upon epigenomic and microbiomic contributions. 

However, human epigenomes and microbiomes are diverse and will change with time, 

and therefore complete datasets for these genetic signatures cannot be collected. 

6. The DoD already maintains a comprehensive medical database for its personnel that 

eventually will also include their complete genome sequences. 

7. The DoD will benefit by organizing personnel data into phenotypes of relevance to the 

military, then correlating those phenotypes with genetic information. 
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Recommendations: 

The DoD can benefit significantly by employing personal genomics technologies when 

evaluating the health and performance characteristics of their personnel. The DoD could take a 

leading role in the personal genomics era, and become full partners with industry and academia 

in creating useful information from genotype and phenotype data. Alternatively, the DoD could 

choose to play a more limited role in the research necessary to link genotypes with phenotypes, 

and pursue only those aspects that are of special interest to the military and that would otherwise 

not be pursued by the civilian sector. 

The DoD can harness the advances in personal genomics technology by taking the actions 

described below. 

Major Recommendation 

The DoD should establish policies that result in the collection of genotype and phenotype data, 

the application of bioinformatics tools to support the health and effectiveness of military 

personnel, and the resolution of ethical and social issues that arise from these activities. The DoD 

and the VA should affiliate with or stand up a genotype/phenotype analysis program that 

addresses their respective needs. Waiting even two years to initiate this process may place them 

unrecoverably behind in the race for personal genomics information and applications. 

Specific Recommendations 

DoD Military Health System 

1. Establish procedures for the collection and archiving from all military personnel DNA 

samples that are compatible with subsequent genotype determination. 

2. Plan for the eventual collection of complete human genome sequence data from all 

military personnel. 

3. Arrange for the secure, long-term storage of DNA sequence data. 

4. Prepare for the collection of epigenome and microbiome data when appropriate. 

DoD Office of Health Affairs 

5. Determine which phenotypes are of greatest relevance to the DoD. 

6. Cooperate with health care professionals to collect and store these data. 

50 



7.   Use bioinformatics tools to correlate genetic information with phenotypes to discover 

linkages between the two datasets that will ultimately allow genotype information to be 

used productively. 
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